26 04 im alumniV8
22 11 im fatiado face
22 11 im fatiado twitter
22 11 im fatiado youtube
22 11 im fatiado gmail
22 11 im fatiado brazil
22 11 im fatiado england
22 11 im fatiado spain

21 07 im noticia Encontro Latino Americano de Matemática e Aplicações1Entre 29 de novembro e 3 de dezembro de 2021 será realizado, de forma virtual, o Encontro Latino-Americano de Matemática e Aplicações (ELAMAP). O ELAMAP é uma atividade do programa de Pós-graduação em Matemática da Universidade Federal do ABC - UFABC e está sendo organizado por docentes da UFABC, em colaboração com docentes das Universidades Federais de Santa Catarina (UFSC), de Pernambuco (UFPE) e da Universidad de Nariño (Colômbia).

Além de palestras, o encontro contará com a realização do curso "Recorrência e valores extremos para sistemas dinâmicos", por Ana Cristina Moreira e Jorge Milhazes Freitas (Universidade do Porto - Portugal) e do curso "Introdução à criptografia", por Valerie Gauthier Umaña (Universidad del Rosario - Colômbia).

O evento será transmitido pelo YouTube Live e as participações podem ser em português, inglês ou espanhol. As inscrições para submeter trabalhos podem ser realizadas, de forma gratuita, até o dia 13 de agosto. Para mais informações, clique AQUI.

26 07 im noticiaA Seminário de GeometriaTítulo: The geometry of the maximum principle and a spherical Bernstein theorem by B. Solomon

Palestrante: Renan Assimos Martins (Hannover)
Data: 27/07/2021
Horário: 14:00h
Local: Transmissão online

Confira AQUI o link para a transmissão.

Resumo: Joint work with J. Jost: A result of B.Solomon (On the Gauss map of an area-minimizing hypersurface. 1984. Journal of Differential Geometry, 19(1), 221-232.) says that a compact minimal hypersurface $M^k$ of the sphere $S^{k+1}$ with $H^1(M)=0$, whose Gauss map omits a neighborhood of an $S^{k−1}$ equator, is totally geodesic in $S^{k+1}$. In this talk, I will present a new proof strategy for Solomon's theorem which allows us to obtain analogous results for higher codimensions. If time permits, we sketch the proof for codimension 2 compact minimal submanifolds of $S^{k+1}$.

12 07 IM Noticia Geometria 1Título: On Mean curvature flow of Singular Riemannian foliations: Non compact cases

Palestrante: Marcos Alexandrino (USP)
Data: 13/07/2021
Horário: 14:00h
Local: Transmissão online

Confira AQUI o link para a transmissão. 

Resumo: In this talk we investigate the mean curvature flow (MCF) of a regular leaf of a closed generalized isoparametric foliation as initial datum, generalizing previous results of Radeschi and first author. We show that, under bounded curvature conditions, any finite time singularity is a singular leaf, and the singularity is of type I. We also discuss the existence of basin of attractions, how cylinder structures can affect convergence of basic MCF of immersed submanifolds and make a few remarks on MCF of non closed leaves of generalized isoparametric foliation.We will introduce all the concepts targeting a wide audience in geometry. This talk is based on a joint work with Leonardo F. Cavenaghi, Icaro Gonçalves.

15 07 im Noticia Interpolation formulas uncertainty principlesTítulo: Interpolation formulas, uncertainty principles and sphere packing

Palestrante: Mateus Souza (Basque Center for Applied Mathematics)
Data: 16/07/2021
Horário: 10:00h
Local: Transmissão via RNP e Youtube

Confira AQUI a transmissão pelo RNP.

Confira AQUI a transmissão pelo Youtube.

Resumo: In this talk we will discuss how uncertainty principles and interpolation formulas are connected to sphere packing problems and talk about some recent developments on these fronts. This talk is intended for a broad audience.

12 07 IM Noticia SeminárioPangolinTítulo: FC-subspaces

Palestrante: Misha Belolipetsky, IMPA
Data: 13/07/2021
Horário: 10:30h
Local: Transmissão online

Confira AQUI o link para a transmissão.

Resumo: In a joint work with Nikolay Bogachev, Alexander Kolpakov, and Leone Slavich we discovered an interesting connection between totally geodesic subspaces of a hyperbolic manifold or orbifold and finite subgroups of the commensurator of its fundamental group. We call the totally geodesic subspaces associated to the finite subgroups by fc-subspaces. It appears that these subspaces have some remarkable properties. We show that in an arithmetic orbifold all totally geodesic subspaces are fc and there are infinitely many of them, while in non-arithmetic cases there are only finitely many fc-subspaces and their number is bounded in terms of volume. In the talk, I will discuss these results and if time permits will sketch some other applications of fc-subspaces.

Topo