26 04 im alumniV8
22 11 im fatiado face
22 11 im fatiado twitter
22 11 im fatiado youtube
22 11 im fatiado gmail
22 11 im fatiado brazil
22 11 im fatiado england
22 11 im fatiado spain

Palestra: Controllability properties of anomalous diffusion phenomena
Palestrante: Sorin Micu (University of Craiova and Institute of Statistical Mathematics and Applied Mathematics, Romênia)

Data: 23/01/2020
Horário: 11h
Sala: C116

Resumo: Many physical phenomena are characterized by an anomalous diffusion when the mean square displacement of a particle will grow at a nonlinear rate in time. Some typical examples are the subdiffusional mobility of the proteic macromolecules in overcrowded cellular cytoplasm and the smoke's superdiffusion in turbulent atmosphere. We consider a simple one dimensional linear model which describes an anomalous diffusive behavior, involving a fractional Laplace operator, and we study its controllability property. If the fractional power of the Laplace operator is less or equal than 1/2 we are dealing with a subdiffusion phenomenon and the system is not spectrally controllable. The aim of the paper is twofold. Firstly, to analyze the possibility of controlling a finite number N of eigenmodes of the solution and to find the behavior of the corresponding controls when N tends to infinity. Secondly, to investigate the null-controllability property of the system when the support of the control moves linearly with respect to time.