26 04 im alumniV8
22 11 im fatiado face
22 11 im fatiado twitter
22 11 im fatiado youtube
22 11 im fatiado gmail
22 11 im fatiado brazil
22 11 im fatiado england
22 11 im fatiado spain

26 07 Seminárioalgebra noticiaTitulo: Higher Koszul brackets on the cotangent complex

Data: 28/07/2022
Horário: 15h
Local: Sala C119

Resumo: Let A=k[x1,x2,…,xn]/I be a commutative algebra where k is a field, char(k)=0⁠, and I⊆S:=k[x1,x2,…,xn] a Poisson ideal. It is well known that [dxi,dxj]:=d{xi,xj} defines a Lie bracket on the A-module ΩA|k of Kähler differentials, making (A,ΩA|k) a Lie–Rinehart pair. If A is not regular, that is, ΩA|k is not projective, the cotangent complex LA|k serves as a replacement for ΩA|k⁠. We prove that LA|k is an L∞-algebroid compatible with the Lie–Rinehart pair (A,ΩA|k)⁠. The L∞-algebroid structure comes from a P∞-algebra structure on the resolvent of the morphism S→A. We identify examples when this L∞-algebroid simplifies to a dg Lie algebroid, concentrating on cases where S is Z≥0-graded and I and {,} are homogeneous.

Para aqueles que quiserem participar on-line do Seminário de álgebra, clique AQUI para acessar.

Meeting ID: 884 0114 9276
Passcode: 429999



Topo