26 04 im alumniV8
22 11 im fatiado face
22 11 im fatiado twitter
22 11 im fatiado youtube
22 11 im fatiado gmail
22 11 im fatiado brazil
22 11 im fatiado england
22 11 im fatiado spain

A geometria diofantina consiste em encontrar soluções inteiras para equações polinomiais inteiras em várias variáveis. Ela data dos gregos, como, por exemplo, o teorema de Pitágoras. Algumas conjecturas resistiram por períodos longos, como o último teorema de Fermat, cerca de 300 anos. Na verdade, sua demonstração é uma incarnação do poder da sucessora da geometria diofantina, a geometria aritmética. Para produzir as soluções procuradas, é mais interessante entender sua complexidade aritmética, medida pela sua altura, da mesma forma que suas encarnações lineares através das representações galoisianas. O fato que o último teorema de Fermat seja verdade é menos interessante que o fato que este é implicado pela conjectura de Shimura-Tanyiama prova por Wiles, Taylor et al. Esta conjectura está ligada profundamente à teoria aritmética das curvas elíticas da segunda metade do século XX. Envolve uma noção ubíqua em matemática, i.e., a teoria de deformação cuja origem remonta à geometria algébrica, mas que estende-se das representações galoisianas a física.

Topo