26 04 im alumniV8
22 11 im fatiado face
22 11 im fatiado twitter
22 11 im fatiado youtube
22 11 im fatiado gmail
22 11 im fatiado brazil
22 11 im fatiado england
22 11 im fatiado spain

31 10 Noticia ColoquioTítulo: Introduction to equivariant machine learning

Palestrante: Soledad Villar (Jhons Hopkins, Estados Unidos)
: 04/11/2022

Horário: 15:00h
Local: Transmissão On-line.Clique AQUI para acessar. (Sala abre às 14:55h)

Resumo: : There has been enormous progress in the last few years in designing neural networks that respect the fundamental symmetries and coordinate freedoms of physical law. Some of these frameworks make use of irreducible representations, some make use of high-order tensor objects, and some apply symmetry-enforcing constraints. Different physical laws obey different combinations of fundamental symmetries, but a large fraction (possibly all) of classical physics is equivariant to translation, rotation, reflection (parity), boost (relativity), scaling (units), and permutations. In this talk we overview different techniques to implement machine learning models that respect these symmetries.