26 04 im alumniV8
22 11 im fatiado face
22 11 im fatiado twitter
22 11 im fatiado youtube
22 11 im fatiado gmail
22 11 im fatiado brazil
22 11 im fatiado england
22 11 im fatiado spain

14 06 im noticia Gaussian free field on a cylinderTítulo: Lozenge tilings and the Gaussian free field on a cylinder

Palestrante: Marianna Russkikh, MIT
Data: 16/06/2021
Horário: 13:00h
Local: Transmissão online.

Confira AQUI o link para transmissão.
ID da reunião: 958 0581 3232

Resumo: We discuss new results on lozenge tilings on an infinite cylinder, which may be analyzed using the periodic Schur process introduced by Borodin. Under one variant of the $q^{vol}$ measure, corresponding to random cylindric partitions, the height function converges to a deterministic limit shape and fluctuations around it are given by the Gaussian free field in the conformal structure predicted by the Kenyon-Okounkov conjecture. Under another variant, corresponding to an unrestricted tiling model on the cylinder, the fluctuations are given by the same Gaussian free field with an additional discrete Gaussian shift component. Fluctuations of the latter type have been previously conjectured by Gorin for tiling models on planar domains with holes. This talk is based on joint work with Andrew Ahn and Roger Van Peski.