26 04 im alumniV8
22 11 im fatiado face
22 11 im fatiado twitter
22 11 im fatiado youtube
22 11 im fatiado gmail
22 11 im fatiado brazil
22 11 im fatiado england
22 11 im fatiado spain

Palestra: Critical scaling for an anisotropic percolation model on Z2
Palestrante: Maria Eulalia Vares (IM-UFRJ)

Data: 27 de maio de 2019 (segunda-feira)
Hora: 15h40
Local: Sala B106-a (Bloco B - CT), Instituto de Matemática - UFRJ

Resumo: We consider an anisotropic finite-range bond percolation model on Z2 . On each horizontal layer Hi = {(x, i): x ∈ Z} we have edges h(x, i),(y, i)i for 1 ≤ |x − y| ≤ N. There are also vertical edges connecting two nearest neighbor vertices on distinct lines h(x, i),(x, i + 1)i for x, i ∈ Z. On this graph we consider the following anisotropic independent percolation model: horizontal edges are open with probability 1/(2N), while vertical edges are open with probability  to be suitably tuned as N grows to infinity. The main result tells that if ∈ = κN 2/5, then we see a phase transition in κ: there exist positive and finite constants C1 , C2 so that there is no percolation if κ < C1 while percolation occurs for κ > C2 .