Inferência Bayesiana em modelos assimétricos
Márcia D. Branco
Nos últimos anos novas classes de distribuições de probabilidade multivariadas e não simétricas tem sido propostas na literatura. O principal interesse é fornecer uma alternativa à suposição de normalidade usualmente considerada na modelagem estatística. Essa alternativa deve acomodar diferentes assimetrias, curtoses e eventualmente multimodalidade. Além disso, essas distribuições de probabilidade devem possibilitar algum tipo de tratamento analítico de modo a facilitar a inferência estatística. As distribuições assimétricas induzidas por processos de seleção, discutidas
em Arellano, Branco e Genton (2006) têm as características descritas anteriormente. Nesta apresentação discutiremos algumas dessas distribuições de probabilidades, tais como, normal-assimétrica e t-assimétrica. Aplicações envolvendo modelos lineares mistos e modelos binários serão apresentadas. A abordagem de inferência considerada para todas as aplicações será a bayesiana, com destaque para o uso de distribuições a priori objetivas.