Ruelle operator duality

for smooth coupled Markov maps of the circle

This document presents how two expanding Markov maps coupled by Baker-like transforms can present an explicit duality between eigenelements for the Ruelle operator of each map. This setting has been inspired by the left and right Bowen-Series maps associated with even corners fundamental domains for hyperbolic surfaces of finite volume.

1. Coupled Markov maps of the circle

In all the following, T_L (respectively T_R) will be a surjective expanding map of the circle to itself that preserves a finite partition $\mathcal{I}_L = (I_k^L)_{k=1...N}$ (respectively $\mathcal{I}_R = (I_k^R)_{k=1...N}$) of the circle in left-open (respectively right-open) intervals. Moreover, each branch T_{L/I_L^L} (respectively T_{L/I_L^L}) will be assumed to be a \mathcal{C}^1 -

Take μ a measure such that $\mathcal{L}_L^*\mu=\lambda_{\max}\mu$ with λ_{\max} the leading eigenvalue. Then :

$$\Delta(x, x', y) - \log \int_{J_L(y)} \exp(\Delta(u, x', y)) d\mu(u)$$

does not depend on x' and is an involution kernel for A_L . We will assume onwards that the potentials A_L and A_R are in involution by a kernel W such that $y \mapsto W(x, y)$ is absolutely continuous on the fiber $\overline{J_R(x)}$ for every x.

3. Eigendistributions of a Ruelle operator acting on a space of piecewise smooth functions

Since \mathbb{S}^1 is compact, there cannot be any distribution of infinite

It is now possible to show that for every pair of intervals I_j^L , I_k^L that have intersecting fibers $J_j^R \cap J_k^R \neq \emptyset$, there is a constant $\mu_{j,k} \in \mathbb{C}$ such that :

 $\forall x_1' \in I_j^L, x_2' \in I_k^L, y' \in J_j^R \cap J_k^R, h(x_1', y') - h(x_2', y') = \mu_{j,k}$ which means that h(x', y') "almost" does not depend on x'. Finally, if $I_k^R = [y_k; y_{k+1}[$, we fix for every k a x_k such that $(x_k, y_k) \in C$, and we let :

$$\begin{split} h_1 &= 0 \\ \forall k, h_{k+1} &= h_k + h(x_k, y_k) - h(x_{k+1}, y_k) \\ \forall k, \forall y \in I_k^R, h(y) &= h_k + h(x_k, y) \end{split}$$

This map h can be lifted to a continuous map on \mathbb{R} , and $\nu = h'$ is an eigendistribution of \mathcal{L}_R for the eigenvalue 1 such that $\psi = \Phi(\nu)$.

diffeomorphism onto its image. \int_{κ}^{κ}

Definition 1.1. We say that two such maps are *coupled* when there is a subset C of $\mathbb{S}^1 \times \mathbb{S}^1$ and a map $T_C : C \to C$ such that : 1. C is a connex union of squares of the form $I_j^L \times I_k^R$: there are two collections of intervals $(J_k^L)_{k=1...N}$ and $(J_k^R)_{k=1...N}$, each of those being a union of contiguous I_j^L and I_j^R respectively, and such that :

 $C = \bigsqcup_{j=1}^{N} I_j^L \times J_j^R = \bigsqcup_{k=1}^{N} J_k^L \times I_k^R$

2. T_C is a bijection of C to itself, is a skew-product of base T_L , and its inverse is a skew-product of base T_R : there are two collections of maps $(S_R(j,.))_{j=1...N}$ and $(S_L(.,k))_{k=1...N}$ such that for every $(x, y) \in C$:

 $T_{C}(x, y) = (T_{L}(x), S_{R}(\kappa_{L}(x), y))$ $T_{C}^{-1}(x, y) = (S_{L}(x, \kappa_{R}(y)), T_{R}(y))$

where $\kappa_L(x)$ (respectively $\kappa_R(y)$ is the interval of the partition \mathcal{I}_L (respectively \mathcal{I}_R) in which x (respectively y) lies. Some examples :

- If $T_L(z) = T_R(z) = z^2$ (i.e. the usual doubling map), T_L and T_R are coupled by the Baker map defined over $C = \mathbb{S}^1 \times \mathbb{S}^1$.

- Suppose that T_L is a Markov map relatively to the partition $\mathcal{I} = (I_k)_{k=1...N}$ whose transition matrix M^L is such that its transpose $M^R = {}^t M^L$ is still the transition matrix of a Markov map. Take T_R any Markov map relatively to \mathcal{I} that has for transitions M^R . Then they are coupled by the given of :

order in the classical sense. Hence a distribution over \mathbb{S}^1 is just a continuous linear functional over one of the spaces $\mathcal{C}^k(\mathbb{S}^1)$ equipped with its usual norm. The lowest suitable index k is the order of the distribution. We will find the distributions we want to study among those of order 1 :

Definition 3.1. A distribution ν over \mathbb{S}^1 is the *weak derivative of a continuous map* if there is a map $h : \mathbb{R} \to \mathbb{C}$ continuous such that $h(x + 2\pi) = h(x) + c$ for some c and for which :

 $\forall \varphi \in \mathcal{C}^1(\mathbb{S}^1), \langle \nu, \varphi \rangle = \tilde{\varphi}(2\pi)h(2\pi) - \tilde{\varphi}(0)h(0) - \int_0^{2\pi} \tilde{\varphi}'(t)h(t)dt$

where $\tilde{\varphi}$ is the lift of φ to \mathbb{R} . We will note $\nu = h'$.

Thanks to this expression, these distributions can be extended to act on functions φ that are C^1 only over an interval I = [a; b[of \mathbb{S}^1 by letting :

$$\langle \hat{\nu}, \varphi \mathbb{1}_{[a;b[} \rangle = \tilde{\varphi}(\tilde{b})h(\tilde{b}) - \tilde{\varphi}(\tilde{a})h(\tilde{a}) - \int_{\tilde{a}}^{b} \tilde{\varphi}'(t)h(t)dt$$

where $\left[\tilde{a}; \tilde{b}\right]$ is a lift of [a; b] to \mathbb{R} . By additivity, this extension can take for test functions the piecewise \mathcal{C}^1 functions onto which the Ruelle operator \mathcal{L}_R acts. This allows us to talk about eigendistributions of \mathcal{L}_R .

Definition 3.2. A distribution $\nu = h'$ is an *eigendistribution of* \mathcal{L}_R if there is an eigenvalue $\lambda \in \mathbb{C}$ such that for every function φ that is \mathcal{C}^1 on each interval of the partition \mathcal{I}_R we have :

 $\langle \hat{\nu}, \mathcal{L}_R \varphi \rangle = \lambda \langle \hat{\nu}, \varphi \rangle$

In the following, we will just note ν for the extension $\hat{\nu}$.

5. The example of the Bowen-Series maps

The Bowen-Series maps T_L and T_R are a couple of surjective expanding Markov maps of the circle naturally associated with "good" fundamental domains for the action of a Fuchsian group Γ of finite covolume on the hyperbolic plane \mathbb{H} . Each of the branches of these maps are hyperbolic isometries. When Γ is actually cocompact, the Bowen-Series maps are even uniformly expanding.

Figure 1: A "good" fundamental domain for Σ_2

$$C = \bigsqcup_{k=1} I_k \times T_R(I_k) = \bigsqcup_{k=1} T_L(I_k) \times I_k$$
$$T_C(x, y) = (T_L(x), T_{R/I_{\kappa(x)}}^{-1}(y))$$
$$T_C^{-1}(x, y) = (T_{L/I_{\kappa(y)}}^{-1}(x), T_R(y))$$

 The left and right Bowen-Series maps for cofinite Fuchsian groups are coupled (see below).

We will also use the following notations :

 $J_{L}(y) = C \cap \mathbb{S}^{1} \times \{y\} \qquad J_{R}(x) = C \cap \{x\} \times \mathbb{S}^{1}$ $S_{R}^{n}(x, y) = \pi_{2}(T_{C}^{n}(x, y)) \qquad S_{R}(x, y) = S_{R}^{1}(x, y) = S_{R}(\kappa_{L}(x), y))$ $S_{L}^{n}(x, y) = \pi_{1}(T_{C}^{-n}(x, y)) \qquad S_{L}(x, y) = S_{L}^{1}(x, y) = S_{L}(x, \kappa_{R}(y))$

2. Involution kernel between two potentials

Let $A_L : \mathbb{S}^1 \to \mathbb{C}$ and $A_R : \mathbb{S}^1 \to \mathbb{C}$ be two potentials respectively associated with T_L and T_R . We will assume a non-symmetric set of hypothesis on those potentials :

 $-A_L$ will be supposed to have bounded variations.

- A_R will be supposed to be absolutely continuous on the closure of each interval of the partition \mathcal{I}_R .

The Ruelle operators associated with the systems $({\cal T}_L, {\cal A}_L)$ and $({\cal T}_R, {\cal A}_R)$ are defined by :

$$\mathcal{L}_L f(x') = \sum_{\substack{T_L(x) = x' \\ T_R(y) = y'}} e^{A_L(x)} f(x)$$

4. Ruelle operator duality

The duality between eigendistributions of \mathcal{L}_R and the eigenfunctions of \mathcal{L}_L is formally established by the map :

 $\Phi: \nu \to \left(x \mapsto \langle \nu, e^W(x, .) \mathbb{1}_C(x, .) \rangle \right)$

The injectivity of this map is the easiest to achieve :

Theorem 4.1 (Injectivity of Φ). Let $\nu = h'$ be a non-zero eigendistribution of \mathcal{L}_R for the eigenvalue λ . Then $\psi = \Phi(\nu)$ is a non-zero eigenfunction of \mathcal{L}_L for the same eigenvalue λ .

The surjectivity requires more hypothesis to be verified, but is constructive :

Theorem 4.2 (Surjectivity of Φ). Let ψ be an eigenfunction of \mathcal{L}_L for the eigenvalue λ , and assume that :

 $-~\psi$ has bounded variations.

- W is bounded from above and below.
- For every x, the function series :

$$y \mapsto \sum_{n \ge 0} \lambda^{-n} e^{A_L^n(S_L^n(x,y))}$$

converges uniformly on the fiber $J_R(x)$.

Then there exists a eigendistribution $\nu = h'$ (with h continuous) of \mathcal{L}_R for the eigenvalue λ such that $\psi = \Phi(\nu)$. Moreover, ν can be explicitely written as a limit of functions constructed from ψ . The most striking point is that the map Φ is the same for all the eigenvalues that satisfy the hypothesis of these results. The explicit construction of the eigendistribution ν of \mathcal{L}_R from an eigenfunction ψ of \mathcal{L}_L goes as follows. First, by changing A_L and A_R into $A_L - \log \lambda$ and $A_R - \log \lambda$ (which are still in involution **Figure 2:** The left and right Bowen-Series map for Σ_2

They are always coupled by a Baker-like map T_C (which happens to be also conjugated with a Poincaré section of the geodesic flow on the surface) whose support C stays at bounded distance from the diagonal of $\mathbb{S}^1 \times \mathbb{S}^1$ when Γ is cocompact.

Figure 3: The coupling Baker map for Σ_2

Moreover, the potentials $A_L = -\log |T'_L|$ and $A_R = -\log |T'_R|$ are in involution by the kernel $W(x,y) = -\log |x-y|^2$ derived

They act respectively on the space of functions with bounded variations and the space of piecewise C^1 maps according to the partition \mathcal{I}_R .

Definition 2.1. Two potentials A_L and A_R associated with Markov maps T_L and T_R coupled by an extension (C, T_C) are *in involution* when there is a map $W : C \to \mathbb{C}$ such that :

 $\forall (x,y) \in C, A_L(x) + W(x,y) = W(T_C(x,y)) + A_R(S_R(x,y))$

If T_L , T_R are uniformly expanding and A_L is Hölder, then there always exists an Hölder potential A_R which is involution with A_L by an Hölder kernel W. Moreover, the difference between two suitable kernels for A_L and A_R may only depend on y. In this setting, the classical technique for building such kernels is to use Sinaï's method. For $x, x', y \in \mathbb{S}^1$ such that $(x, y) \in C$ and $(x', y) \in C$, let :

$$\Delta(x, x', y) = \sum_{n \ge 1} A_L(S_L^n(x, y)) - A_L(S_L^n(x', y))$$

by the same kernel W), we can assume that $\lambda = 1$. Now let for every $n \ge 0$ and $(x', y') \in C$:

 $g_n(x',y') = \sum_{T_L^n(x)=x'} e^{A_L^n(x)} \psi(x) \mathbb{1}_{]c(x');y']}(S_R^n(x,d(x)))$

where the fiber $J_R(x) = [c(x); d(x)[$. Note that $g_n(x', c(x')) = 0$ whereas $g_n(x', d(x')) = \psi(x')$ for every n. Under the hypothesis of the theorem, this sequence of functions converges for every x'uniformly in $y' \in \overline{J_R(x')}$ to a $g: C \to \mathbb{C}$ such that :

 $\forall (x', y') \in C, g(T_C(x', y')) = e^{A_L(x')}g(x', y') + \eta(x')$

for some η bounded. Moreover, $y'\mapsto g(x',y')$ is continuous on $\overline{J_R(y')}$ for every x' From there, define :

 $h(x',y') = e^{-W(x',y')}g(x',y') - e^{-W(x',c(x'))}g(x',c(x'))$ $- \int_{c(x')}^{y'} \left[\partial_2 e^{-W}\right](x',t)g(x',t)dt$ from the Gromov distance. Hence, whenever Γ is cocompact, both theorems can be applied to these maps equipped with these potentials. This gives an explicit relation between eigenfunctions of \mathcal{L}_L for the eigenvalue 1 and eigendistributions of \mathcal{L}_R for the eigenvalue 1, which are themselves explicitly related to eigenfunctions of the laplacian on the quotient surface $\mathbb{H}_{/\Gamma}$.

References

 A. Baraviera, A. O. Lopes, and P. Thieullen. A Large Deviation Principle for the equilibrium states of Holder Potentials: the zero temperature case. *Stochastics and Dynamics*, 6(1):77–96, 2006.
A. O. Lopes, E. R. Oliveira, and D. Smania. Ergodic transport theory and piecewise analytic subactions for analytic dynamics. *Bull. of the Braz. Math. Soc.*, 43(3):467–512, 2012.
V. Pit. Invariant Relations for the Bowen-Series Transform. *Con-*

formal Geometry and Dynamics, 16:103–123, 2012.