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This document presents how two expanding Markov maps coupled
by Baker-like transforms can present an explicit duality between
eigenelements for the Ruelle operator of each map. This setting
has been inspired by the left and right Bowen-Series maps associ-
ated with even corners fundamental domains for hyperbolic surfaces
of finite volume.

1. Coupled Markov maps of the circle

In all the following, TL (respectively TR) will be a surjective ex-
panding map of the circle to itself that preserves a finite partition
IL = (ILk )k=1...N (respectively IR = (IRk )k=1...N) of the cir-
cle in left-open (respectively right-open) intervals. Moreover, each
branch TL/ILk

(respectively TL/ILk
) will be assumed to be a C1-

diffeomorphism onto its image.

Definition 1.1. We say that two such maps are coupled when
there is a subset C of S1×S1 and a map TC : C → C such that :

1.C is a connex union of squares of the form ILj × I
R
k : there are

two collections of intervals (JLk )k=1...N and (JRk )k=1...N , each

of those being a union of contiguous ILj and IRj respectively, and
such that :

C =

N⊔
j=1

ILj × J
R
j =

N⊔
k=1

JLk × I
R
k

2. TC is a bijection of C to itself, is a skew-product of base TL,
and its inverse is a skew-product of base TR : there are two
collections of maps (SR(j, .))j=1...N and (SL(., k))k=1...N such
that for every (x, y) ∈ C :

TC(x, y) = (TL(x), SR(κL(x), y))

T−1
C (x, y) = (SL(x, κR(y)), TR(y))

where κL(x) (respectively κR(y) is the interval of the partition
IL (respectively IR) in which x (respectively y) lies.

Some examples :

− If TL(z) = TR(z) = z2 (i.e. the usual doubling map), TL and
TR are coupled by the Baker map defined over C = S1 × S1.

− Suppose that TL is a Markov map relatively to the partition
I = (Ik)k=1...N whose transition matrix ML is such that its

transpose MR =
t
ML is still the transition matrix of a Markov

map. Take TR any Markov map relatively to I that has for
transitions MR. Then they are coupled by the given of :

C =

N⊔
k=1

Ik × TR(Ik) =

N⊔
k=1

TL(Ik)× Ik

TC(x, y) = (TL(x), TR
−1
/Iκ(x)

(y))

T−1
C (x, y) = (TL

−1
/Iκ(y)

(x), TR(y))

− The left and right Bowen-Series maps for cofinite Fuchsian
groups are coupled (see below).

We will also use the following notations :

JL(y) = C ∩ S1 × {y} JR(x) = C ∩ {x} × S1

SnR(x, y) = π2(TnC(x, y)) SR(x, y) = S1
R(x, y) = SR(κL(x), y))

SnL(x, y) = π1(T−nC (x, y)) SL(x, y) = S1
L(x, y) = SL(x, κR(y))

2. Involution kernel between two potentials

Let AL : S1→ C and AR : S1→ C be two potentials respectively
associated with TL and TR. We will assume a non-symmetric set
of hypothesis on those potentials :

− AL will be supposed to have bounded variations.

− AR will be supposed to be absolutely continuous on the closure
of each interval of the partition IR.

The Ruelle operators associated with the systems (TL, AL) and
(TR, AR) are defined by :

LLf (x′) =
∑

TL(x)=x′

eAL(x)f (x)

LRf (y′) =
∑

TR(y)=y′

eAR(y)f (y)

They act respectively on the space of functions with bounded varia-
tions and the space of piecewise C1 maps according to the partition
IR.

Definition 2.1. Two potentials AL and AR associated with
Markov maps TL and TR coupled by an extension (C, TC) are
in involution when there is a map W : C → C such that :

∀(x, y) ∈ C,AL(x) + W (x, y) = W (TC(x, y)) + AR(SR(x, y))

If TL, TR are uniformly expanding and AL is Hölder, then there
always exists an Hölder potential AR which is involution with AL
by an Hölder kernel W . Moreover, the difference between two suit-
able kernels for AL and AR may only depend on y. In this setting,
the classical technique for building such kernels is to use Sinäı’s
method. For x, x′, y ∈ S1 such that (x, y) ∈ C and (x′, y) ∈ C,
let :

∆(x, x′, y) =
∑
n≥1

AL(SnL(x, y))− AL(SnL(x′, y))

Take µ a measure such that L∗Lµ = λmaxµ with λmax the leading
eigenvalue. Then :

∆(x, x′, y)− log

∫
JL(y)

exp(∆(u, x′, y))dµ(u)

does not depend on x′ and is an involution kernel for AL.
We will assume onwards that the potentials AL and AR are in
involution by a kernel W such that y 7→ W (x, y) is absolutely
continuous on the fiber JR(x) for every x.

3. Eigendistributions of a Ruelle operator acting on a
space of piecewise smooth functions

Since S1 is compact, there cannot be any distribution of infinite
order in the classical sense. Hence a distribution over S1 is just a
continuous linear functional over one of the spaces Ck(S1) equipped
with its usual norm. The lowest suitable index k is the order of the
distribution. We will find the distributions we want to study among
those of order 1 :

Definition 3.1. A distribution ν over S1 is the weak derivative of
a continuous map if there is a map h : R → C continuous such
that h(x + 2π) = h(x) + c for some c and for which :

∀ϕ ∈ C1(S1), 〈ν, ϕ〉 = ϕ̃(2π)h(2π)− ϕ̃(0)h(0)−
∫ 2π

0
ϕ̃′(t)h(t)dt

where ϕ̃ is the lift of ϕ to R. We will note ν = h′.
Thanks to this expression, these distributions can be extended to
act on functions ϕ that are C1 only over an interval I = [a; b[ of
S1 by letting :

〈ν̂, ϕ1[a;b[〉 = ϕ̃(b̃)h(b̃)− ϕ̃(ã)h(ã)−
∫ b̃

ã
ϕ̃′(t)h(t)dt

where
[
ã; b̃
[

is a lift of [a; b[ to R. By additivity, this extension can

take for test functions the piecewise C1 functions onto which the
Ruelle operator LR acts. This allows us to talk about eigendistri-
butions of LR.

Definition 3.2. A distribution ν = h′ is an eigendistribution of
LR if there is an eigenvalue λ ∈ C such that for every function ϕ
that is C1 on each interval of the partition IR we have :

〈ν̂,LRϕ〉 = λ〈ν̂, ϕ〉

In the following, we will just note ν for the extension ν̂.

4. Ruelle operator duality

The duality between eigendistributions of LR and the eigenfunc-
tions of LL is formally established by the map :

Φ : ν →
(
x 7→ 〈ν, eW (x, .)1C(x, .)〉

)
The injectivity of this map is the easiest to achieve :

Theorem 4.1 (Injectivity of Φ). Let ν = h′ be a non-zero eigendis-
tribution of LR for the eigenvalue λ. Then ψ = Φ(ν) is a non-zero
eigenfunction of LL for the same eigenvalue λ.

The surjectivity requires more hypothesis to be verified, but is con-
structive :

Theorem 4.2 (Surjectivity of Φ). Let ψ be an eigenfunction of
LL for the eigenvalue λ, and assume that :

− ψ has bounded variations.

− W is bounded from above and below.

− For every x, the function series :

y 7→
∑
n≥0

λ−neA
n
L(SnL(x,y))

converges uniformly on the fiber JR(x).

Then there exists a eigendistribution ν = h′ (with h continuous)
of LR for the eigenvalue λ such that ψ = Φ(ν). Moreover, ν can
be explicitely written as a limit of functions constructed from ψ.

The most striking point is that the map Φ is the same for all the
eigenvalues that satisfy the hypothesis of these results.
The explicit construction of the eigendistribution ν of LR from an
eigenfunction ψ of LL goes as follows. First, by changing AL and
AR into AL − log λ and AR − log λ (which are still in involution
by the same kernel W ), we can assume that λ = 1. Now let for
every n ≥ 0 and (x′, y′) ∈ C :

gn(x′, y′) =
∑

T nL(x)=x′

eA
n
L(x)ψ(x)1]c(x′);y′](S

n
R(x, d(x)))

where the fiber JR(x) = [c(x); d(x)[. Note that gn(x′, c(x′)) = 0
whereas gn(x′, d(x′)) = ψ(x′) for every n. Under the hypothesis
of the theorem, this sequence of functions converges for every x′

uniformly in y′ ∈ JR(x′) to a g : C → C such that :

∀(x′, y′) ∈ C, g(TC(x′, y′)) = eAL(x′)g(x′, y′) + η(x′)

for some η bounded. Moreover, y′ 7→ g(x′, y′) is continuous on
JR(y′) for every x′ From there, define :

h(x′, y′) = e−W (x′,y′)g(x′, y′)− e−W (x′,c(x′))g(x′, c(x′))

−
∫ y′

c(x′)

[
∂2e
−W
]

(x′, t)g(x′, t)dt

It is now possible to show that for every pair of intervals ILj , ILk
that have intersecting fibers JRj ∩ J

R
k 6= ∅, there is a constant

µj,k ∈ C such that :

∀x′1 ∈ I
L
j , x
′
2 ∈ I

L
k , y
′ ∈ JRj ∩ J

R
k , h(x′1, y

′)− h(x′2, y
′) = µj,k

which means that h(x′, y′) ”almost”does not depend on x′. Finally,
if IRk = [yk; yk+1[, we fix for every k a xk such that (xk, yk) ∈ C,
and we let :

h1 = 0

∀k, hk+1 = hk + h(xk, yk)− h(xk+1, yk)

∀k,∀y ∈ IRk , h(y) = hk + h(xk, y)

This map h can be lifted to a continuous map on R, and ν = h′ is
an eigendistribution of LR for the eigenvalue 1 such that ψ = Φ(ν).

5. The example of the Bowen-Series maps

The Bowen-Series maps TL and TR are a couple of surjective ex-
panding Markov maps of the circle naturally associated with ”good”
fundamental domains for the action of a Fuchsian group Γ of finite
covolume on the hyperbolic plane H. Each of the branches of these
maps are hyperbolic isometries. When Γ is actually cocompact, the
Bowen-Series maps are even uniformly expanding.
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Figure 1: A ”good” fundamental domain for Σ2
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Figure 2: The left and right Bowen-Series map for Σ2

They are always coupled by a Baker-like map TC (which happens
to be also conjugated with a Poincaré section of the geodesic flow
on the surface) whose support C stays at bounded distance from
the diagonal of S1 × S1 when Γ is cocompact.

Figure 3: The coupling Baker map for Σ2

Moreover, the potentials AL = − log |T ′L| and AR = − log |T ′R|
are in involution by the kernel W (x, y) = − log |x − y|2 derived
from the Gromov distance. Hence, whenever Γ is cocompact, both
theorems can be applied to these maps equipped with these poten-
tials. This gives an explicit relation between eigenfunctions of LL
for the eigenvalue 1 and eigendistributions of LR for the eigenvalue
1, which are themselves explictely related to eigenfunctions of the
laplacian on the quotient surface H/Γ.
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