ASYMPTOTIC STABILITY OF THE WAVE EQUATION ON COMPACT MANIFOLDS AND LOCALLY DISTRIBUTED VISCOELASTIC DISSIPATION

MARCELO M. CAVALCANTI, VALRIA N. DOMINGOS CAVALCANTI, AND FLVIO A. F. NASCIMENTO

Abstract. We discuss the asymptotic stability of the wave equation on a compact Riemannian manifold \((M, g)\) subject to locally distributed viscoelastic effects on a subset \(\omega \subset M\). Assuming that the well known geometric control condition \((\omega, T_0)\) holds and supposing that the relaxation function is bounded by a function that decays exponentially to zero, we show that the solutions of the corresponding partial viscoelastic model decay exponentially to zero. We give a new geometric proof extending the prior results in the literature from the Euclidean setting to compact Riemannian manifolds (without or with boundary).

\[
\begin{align*}
 u_{tt} - \kappa_0 \Delta u + \int_0^t g(t-s) \text{div}[a(x) \nabla u(s)] \, ds &= 0 \quad \text{on} \ M \times]0, \infty[, \\
 u &= 0 \quad \text{on} \ \partial M \times]0, \infty[, \\
 u(0) &= u^0, \quad u_t(0) = u^1, \quad x \in M.
\end{align*}
\]

References

Research of Marcelo M. Cavalcanti partially supported by the CNPq Grant 300631/2003-0.
Research of Valeria N. Domingos Cavalcanti partially supported by the CNPq Grant 304895/2003-2.
Doctorate student by State University of Maringá, partially supported by a grant of CNPq, Brazil.