26 04 im alumniV8
22 11 im fatiado face
22 11 im fatiado twitter
22 11 im fatiado youtube
22 11 im fatiado gmail
22 11 im fatiado brazil
22 11 im fatiado england
22 11 im fatiado spain

03 01 IM HarmonicFunctions NoticiaTítulo: Harmonic functions on spaces with Ricci curvature bounded below

Palestrante: Jesús Núñez-Zimbrón (CIMAT)

Data: 04/01/2022
Horário: 14:00h
Local: Transmissão online

Confira AQUI o link para a transmissão.
ID da reunião: 811 6291 5241 

Resumo:The so-called spaces with the Riemannian curvature-dimension conditions (RCD spaces) are metric measure spaces which are not necessarily smooth but admit a notion of “Ricci curvature bounded below and dimension bounded above”. These spaces arise naturally as Gromov-Hausdorff limits of Riemannian manifolds with these conditions and, in contrast to manifolds, RCD spaces typically have topological or metric singularities. Nevertheless a considerable amount of Riemannian geometry can be recovered for these spaces. In this talk I will present recent work joint with Guido De Phillipis, in which we show that the gradients of harmonic functions vanish at the singular points of the space. I will mention two applications of this result on smooth manifolds: it implies that there does not exist an a priori estimate on the modulus of continuity of the gradient of harmonic functions depending only on lower bounds of the sectional curvature and there is no a priori Calderón-Zygmund inequality for the Laplacian with bounds depending only on the sectional curvature.

Mais informação sobre a palestra, seminários futuros e passados pode ser encontradas AQUI.

12 03 im noticia ProbabilityWebinarTítulo: An isoperimetric interpretation for the renormalized volume of convex co-compact hyperbolic 3-manifolds

Palestrante: Celso Viana (UFMG)

Data: 26/10/2021
Horário: 14:00h
Local: Transmissão online

Confira AQUI o link para a transmissão.
ID da reunião: 878 0813 6599

Resumo: In this we will discuss an important class of hyperbolic 3-manifolds known as quasi-Fuchsian 3-manifolds and the notion of renormalized volume in these spaces. We will address some aspects of the isoperimetric problem in these manifolds and present a characterization of the renormalized volume in terms of isoperimetric data at infinity.

Mais informação sobre a palestra, seminários futuros e passados pode ser encontradas AQUI.

27 09 im noticia Sharp solvability criteria for DirichleTítulo: Sharp solvability criteria for Dirichlet problems of mean curvature type in

Palestrante: Yunelsy N. Alvarez (Universidade de São Paulo)
Data: 28/09/2021
Horário: 14:00h
Local: Transmissão online

Confira AQUI o link para a transmissão.
ID da reunião: 898 9580 4229

Resumo: In this talk, we investigate the existence of graphs with prescribed mean curvature in Riemannian manifolds. Specifically, we show that a condition - inherited from the Euclidean setting - is sharp for the solvability of the Dirichlet problem for prescribed mean curvature equations in a large class of manifolds.

Mais informação sobre a palestra, seminários futuros e passados pode ser encontrada AQUI.

08 10 IM Noticia2Título: Gradient map for the action of a real reductive Lie group

Palestrante: Leonardo Biliotti (Università di Parma)
Data: 19/10/2021
Horário: 10:00h
Local: Transmissão online

Confira AQUI o link para a transmissão.
ID da reunião: 824 5727 0949

Resumo: We study the action of a real reductive group G on a real submanifold X of a Kahler manifold Z. We suppose that the action of G extends holomorphically to an action of the complexified group G^\C and that with respect to a compatible maximal compact subgroup U of G^\C the action on Z is Hamiltonian. There is a corresponding gradient map μ : X → p where g = k⊕p is a Cartan decomposition of g. Using an Ad(K)-invariant inner product we obtain the norm square of the gradient map. In this talk we investigate convexity properties of the gradient map. We also describe compact orbits of a parabolic subgroup of G. Finally, we investigate the norm square of the gradient map. As an application we prove that a norm square of a two orbit variety M is Morse-Bott obtaining results on the cohomology and the K-invariant cohomology of M.  A part of this talk is a joint work with my PhD student Joshua Windare (arXiv:2106.13074, arXiv:2105.05765 and arXiv:2012.14858).

Mais informação sobre a palestra, seminários futuros e passados pode ser encontradas AQUI.

10 09 IM Noticia seminárioTítulo: Kähler geometry of moduli of parabolic bundles in mathematical physics

Palestrante: Claudio Meneses (Christian-Albrechts-Universität Kiel)
Data: 14/09/2021
Horário: 14:00h
Local: Transmissão online

Confira AQUI o link para a transmissão.

Resumo:  Since their introduction in the 1980s, moduli spaces of parabolic bundles have arisen in a surprisingly large and ever-increasing number of occasions at the interface of geometry, topology, and mathematical physics. The natural Kähler structure carried by these moduli spaces constitutes a primary piece in the broad puzzle of relations between these subjects. In this talk I will present a condensed overview of the beautiful history of these interactions, focusing on the peculiarities of the genus 0 case.

Mais informação sobre a palestra, seminários futuros e passados pode ser encontrada AQUI.

Topo